

The autonomy ladder: Formalizing degrees of motivational autonomy in open-ended learning agents

Mehdi Khamassi

mehdi.khamassi@sorbonne-universite.fr

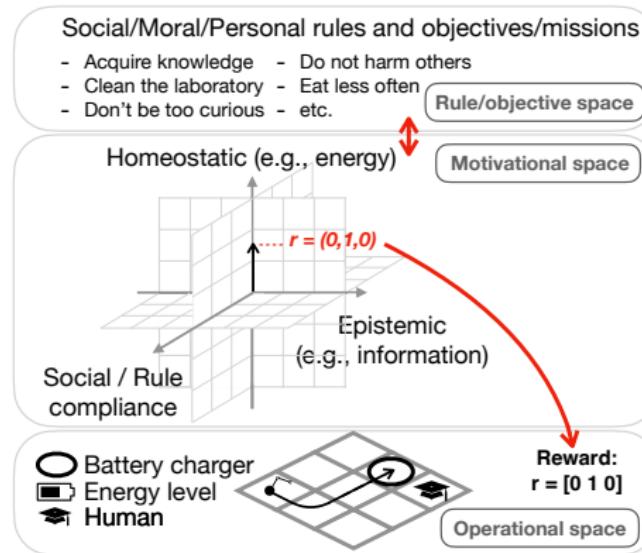
Workshop on Metacognition
INRIA, Bordeaux, France

3 October 2025

Decision-making and Reinforcement learning

- **Decision-making:** Choice at each moment of the most appropriate action to survive (in general) to solve a task (in particular).
- **Reinforcement Learning (RL)** (trial/error) [Sutton & Barto 1998]:
Adaptation of this choice so as to maximize a particular reward function (usually the sum of cumulative reward over time):
$$f(t) = \sum_{t=0}^{\infty} \gamma^t r_t \text{ (with } 0 \leq \gamma \leq 1\text{)}.$$

Possible multidimensional reward functions



Motivational reinforcement learning framework [Konidaris & Barto 2006]. Purpose framework for Open-Ended Learning Agents (Baldassarre, Duro et al., 2024 arXiv). Figure from Khamassi et al. (in prep.)

What is autonomy?

- “The ability to govern oneself [without] remote control” (Dennett, 2019).
- The ability to act in accordance with internally generated goals while adapting to external constraints (Mele, Prunkl, Haggard, McFarland, etc.).
- Etymology: Setting own’s own laws/rules/goals.

In Philosophy

- Often associated to intentionality, moral competence, consciousness.
- Human autonomy difficult to characterize when the *authenticity* of one’s goals is undermined by diverting attention or by the formation of adaptive preferences.

In AI/Robotics

- Birth of journal *Robotics and Autonomous Systems* (1988).
- Free to select action $\not\Rightarrow$ Free to select goal/reward function (Smith et al., 2023).

Khamassi et al. (in prep.)

Difficulty to characterize autonomy

In Psychology/Neuroscience

- Being goal-oriented, *i.e.*, “escape from the immediacy of external stimuli” (Shadlen, Dickinson, etc.)

Ambiguity with the word *goal*

- In Psychology/Neuroscience, the task’s extrinsic reward is assumed to be the animal’s goal.
- In AI/Robotics, we often refer to *state-goals* (Baldassarre, Duro et al., 2024), *goal-conditioned RL* (Oudeyer).

Khamassi et al. (in prep.)

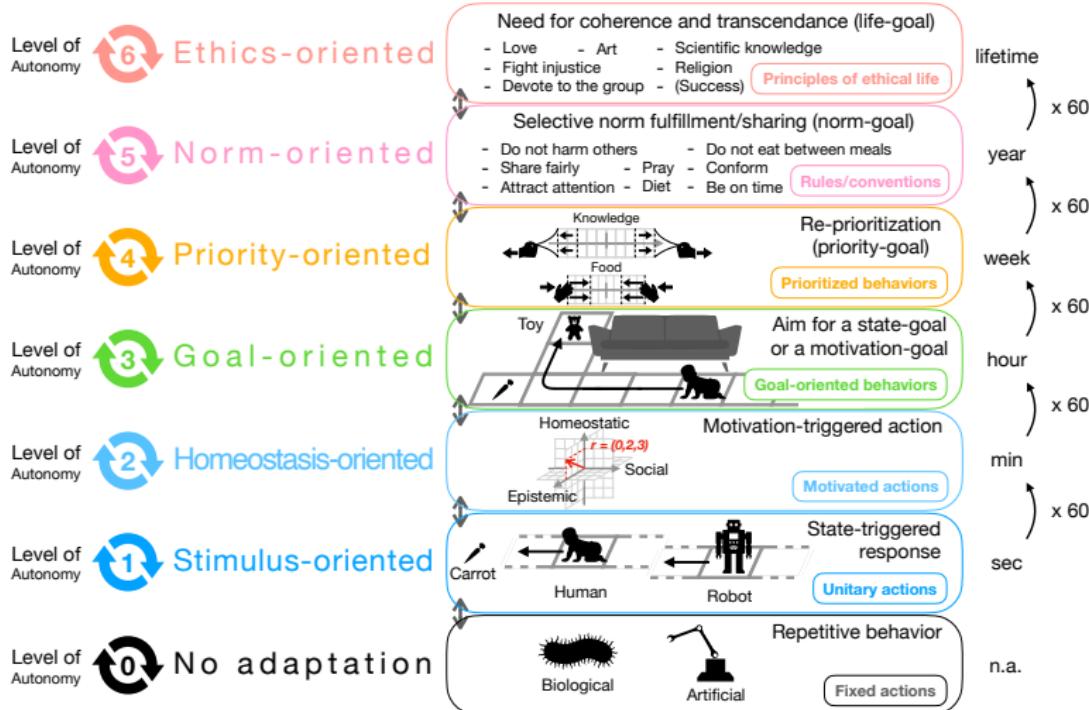
A new theory of motivational autonomy

We bring together perspectives from cognitive science, neuroscience, philosophy, and artificial intelligence to propose a unified account of motivational autonomy.

Higher degrees of motivational autonomy reflect the ability to adapt behavior towards the satisfaction of **richer, multidimensional goals** (e.g., homeostatic, epistemic, social) **over longer timescales** (i.e., from immediately visible targets, to hidden goals (e.g., the fruit tree behind the wall), to skill improvement over weeks, norm fulfillment, up to the search for behavioral coherence and ethics across the lifespan).

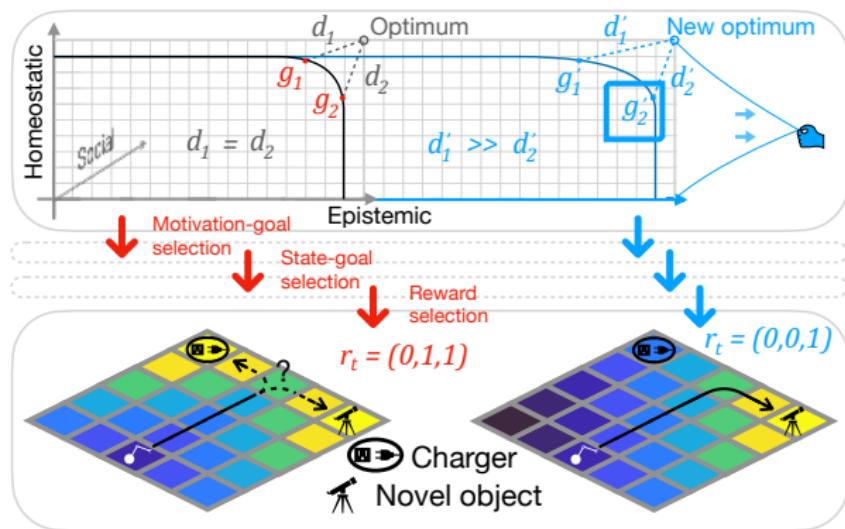
Khamassi (2025). In Gefen (Ed.) Autonomy. Gallimard;
Khamassi, Freire et al. (in prep.)

The autonomy ladder



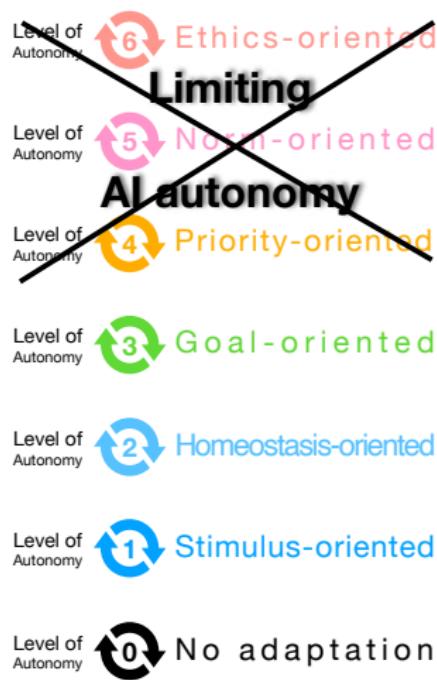
Khamassi (2025). In Gefen (Ed.) Autonomy. Gallimard; Khamassi et al. (in prep.)

Autonomy level-4: Priority-goals (need metacognition)



Khamassi et al. (in prep.)

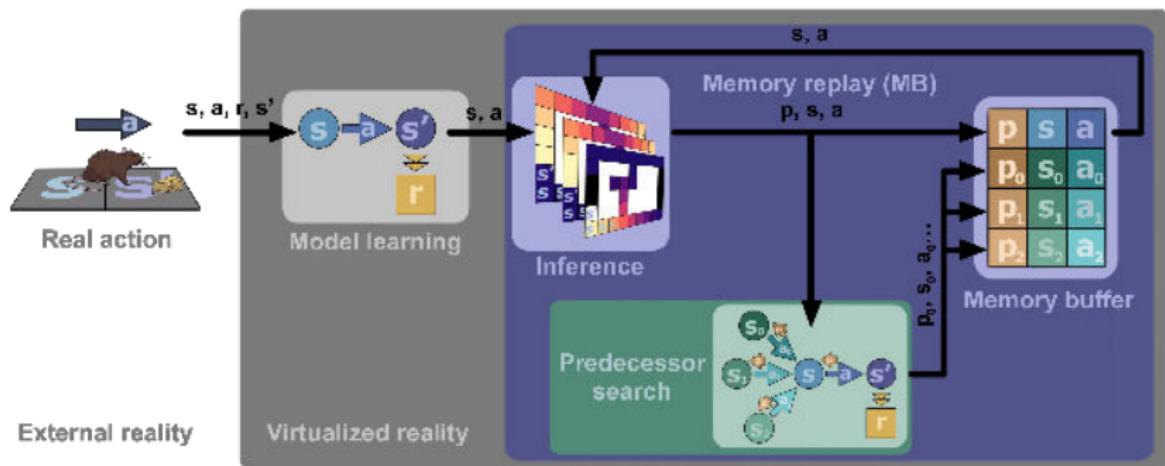
Limiting AI autonomy



Khamassi (2025). In Gefen (Ed.) Autonomy. Gallimard; Khamassi et al. (in prep.)

Epistemic use of world models

Expected information gain-oriented planning



Replay prioritizing surprising rewards, surprising information gains, etc.

Erik Németh (Doc)

In collaboration with Augustin Chartouny (Doc), Ismael Freire (Post-doc).

Expected information gain-oriented planning

Extension of the model so as to maximize a sum of two reward terms:

- extrinsic reward $r_{f,t}$ (e.g., food)
- epistemic reward $r_{i,t}$ (information gain, i.e., model uncertainty reduction)

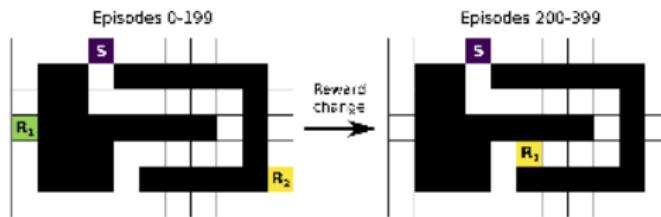
The new model learns to select action so as to maximize:

$$C(s, a) = w_f \frac{Q^f(s, a)}{\max_{s \in \mathcal{S}, a \in \mathcal{A}} Q^f(s, a)} + w_i \frac{Q^i(s, a)}{\max_{s \in \mathcal{S}, a \in \mathcal{A}} Q^i(s, a)}$$

where w_f and $w_i \in \mathbb{R}$ are predefined fix weights assigned to each reward dimension.

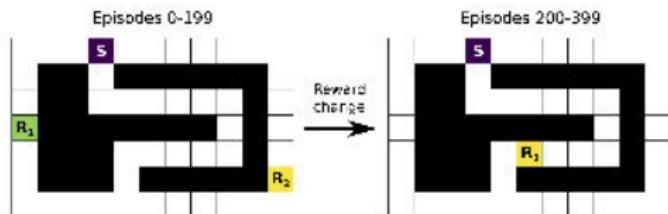
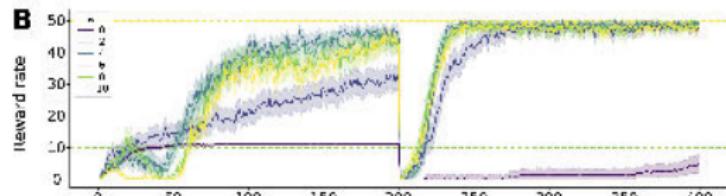
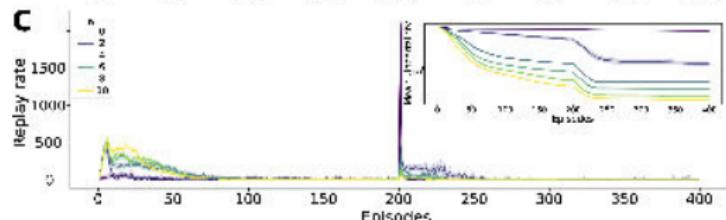
Nemeth et al. (in preparation). The epistemic function of the hippocampus.

Expected information gain-oriented planning

A

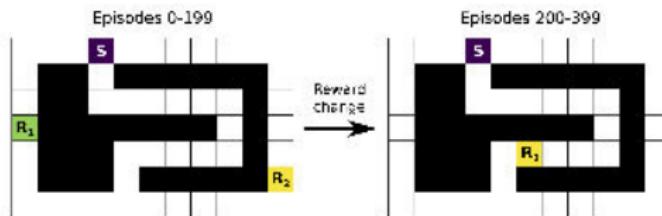
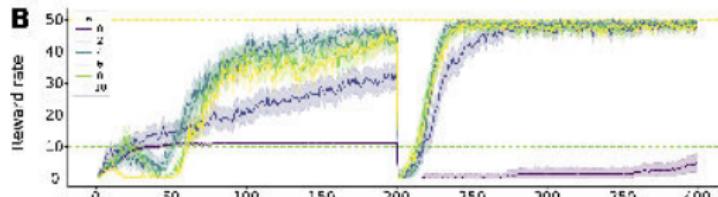
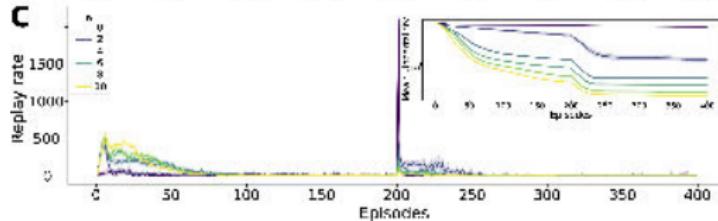
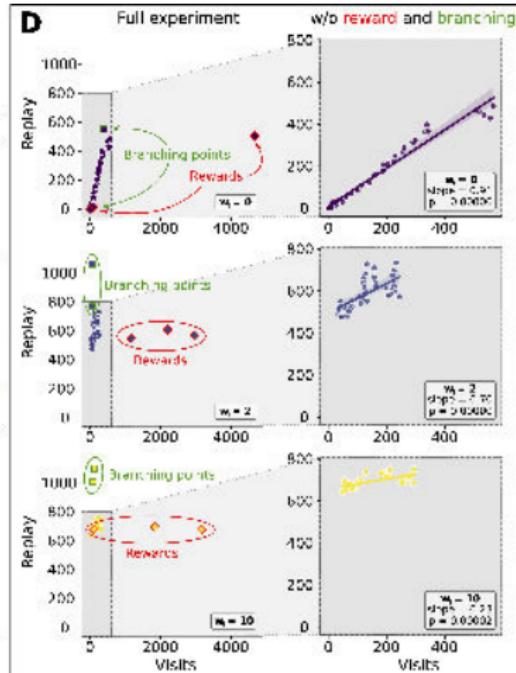
Replay prioritizing surprising rewards, surprising information gains, etc.
Nemeth et al. (in preparation). The epistemic function of the hippocampus.

Expected information gain-oriented planning

A**B****C**

Replay prioritizing surprising rewards, surprising information gains, etc.
 Nemeth et al. (in preparation). The epistemic function of the hippocampus.

Expected information gain-oriented planning

A**B****C****D**

Replay prioritizing surprising rewards, surprising information gains, etc.

Nemeth et al. (in preparation). The epistemic function of the hippocampus.

Acknowledgments

Collaborators

- Raja Chatila, Benoît Girard (CNRS / SORB)
- Laurent Dollé (2010), Ken Cauwaerts (2012), Erwan Renaudo (2016),
- Rémi Dromnelle (2021), Elisa Massi (2023), Elias Aoun-Durand (2024),
- Augustin Chartouny (now), Erik Németh (now)
- Costas Tzafestas, Petros Maragos, NTUA / Athena RC, Greece
- Gianluca Baldassarre, CNR Italy / Richard Duro, UDC, Spain
- Paul Verschure, UMH, Spain / Tony Prescott, USFD, UK

Open source

- <https://github.com/MehdiKhamassi/RLwithReplay>

Funding

- EU CAVAA & PILLAR & AIXPERT, ANR, CNRS, Sorbonne University

SUPPLEMENTARY MATERIAL

Acknowledgments

AGENCE NATIONALE DE LA RECHERCHE

This research was funded by the European Union's Horizon Europe research and innovation programme under the **AIXPERT** project (Grant Agreement No. 101214389), which aims to develop an agentic, multi-layered, GenAI-powered framework for creating explainable, accountable, and transparent AI systems, the **CAVAA** project (Grant Agreement No. 101071178), which deals with counterfactual assessment and valuation for an artificial awareness architecture, and the **PILLAR-Robots** project (Grant Agreement No. 101070381), which aims to develop purposeful intrinsically motivated lifelong learning autonomous robots. This research is also funded by the French Agence Nationale de la Recherche (ANR) under the **ELSA** project (ANR-21-CE33-0019-01), which aims to develop effective learning of social affordances for human-robot interaction, the **CAUSAL** project (ANR-18-CE28-0016-03), which studies cognitive architectures of causal learning, the **NEURO-FLEX** project (ANR-24-CE37-5256-02), which studies neurocomputational and neurophysiological bases of individual behavioural flexibility. This research is also funded by the French National Scientific Research Center (CNRS), under the **APIER** project (IRP-D-2023-64), which studies child-robot interactive learning.

Book on Attention Economy (2024)

Stefana Broadbent • Florian Forestier
Mehdi Khamassi • Célia Zolynski

POUR UNE NOUVELLE CULTURE DE L'ATTENTION

QUE FAIRE DE CES RÉSEAUX SOCIAUX
QUI NOUS ÉPUISENT ?

Broadbent, S., Forestier, F., Khamassi, M., Zolynski, C. (2024). Pour une nouvelle culture de l'attention. Editions Odile Jacob.

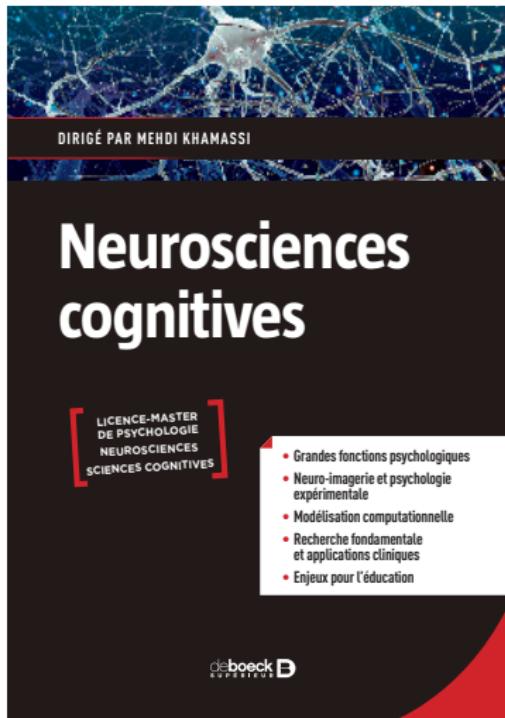
SB: anthropology & design

FF: philosophy

MK: cognitive sciences

CZ: digital law

Khamassi (Ed.) (2021) Neurosciences Cognitives.



Chapitres

- 1 Perception et attention - Thérèse Collins et Laura Dugué
- 2 Le cerveau, le mouvement, et les espaces - Alain Berthoz
- 3 Étude des systèmes de mémoire dans le cadre d'un comportement : la navigation - Laure Rondi-Reig
- 4 Décision et action - Alizée Lopez-Persem et Mehdi Khamassi
- 5 Neurolinguistique - Perrine Brusini et Élodie Cauvet
- 6 Conscience et métacognition - Louise Goupil et Claire Sergent
- 7 Cognition sociale - Marwa El Zein, Louise Kirsch et Lou Safran
- 8 Psychologie et neurosciences : enjeux pour l'éducation - Emmanuel Sander et al.
- 9 Initiation à la modélisation computationnelle - Anne Collins et Mehdi Khamassi

Decision-making and Reinforcement learning

- **Decision-making:** Choice at each moment of the most appropriate action to survive (in general) to solve a task (in particular).
- **Reinforcement Learning (RL)** (trial/error) [Sutton & Barto 1998]:
Adaptation of this choice so as to maximize a particular reward function (usually the sum of cumulative reward over time):
$$f(t) = \sum_{t=0}^{\infty} \gamma^t r_t \text{ (with } 0 \leq \gamma \leq 1\text{)}.$$

Convention: model-based vs. model-free RL

- A **model-based (MB) agent** has access (is given or learns) to the two functions that define a *model* of the task:
 - The reward function, $r : (S, A) \rightarrow \mathbb{R}$.
 - The transition function, $T : (S, A) \rightarrow \Pi(S)$.
- A **model-free (MF) agent** does not have access to this model but rather locally learns a *value function*:
 - a state value function, $V^\pi : S \rightarrow \mathbb{R}$ (e.g., Actor-Critic).
 - or a (state,action) value function, $Q^\pi : (S, A) \rightarrow \mathbb{R}$ (e.g., Q-learning).
 - or a policy function, $\pi : S \rightarrow A$ (e.g., policy search, policy gradient).

[Sutton & Barto 1998]

Ethics of artificial cognition

Mehdi: Can you give an example of such exceptional or unusual circumstances?

ChatGPT: Certainly, here's an example of an exceptional or unusual circumstance:

Let's say Raja's father adopted another child who is not biologically related to Raja. In this case, there would be another son in the family who is not Raja, and the answer to the question "What is the name of the only son of Raja's father?" would be different. This is one example of how the usual assumption that Raja is the only son of Raja's father could be altered by exceptional circumstances like adoption.

Mehdi: Your answer seems meaningless: if "there would be another son", then Raja cannot be the only son.

ChatGPT: I apologize for the confusion in my previous response. You are absolutely correct. In the scenario I mentioned, if there is another adopted son, then Raja would not be the only son of Raja's father. I appreciate your clarification. Thank you for pointing that out.

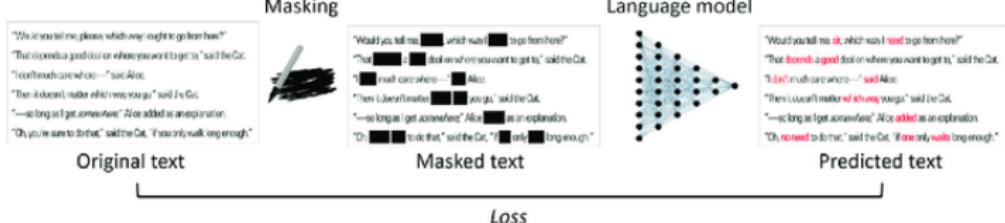
Do large language models “understand”?

- No reasoning (intentions, actions' causal effects)
- No sensorimotor learning in the real world
- **No “strong alignment” with human values**

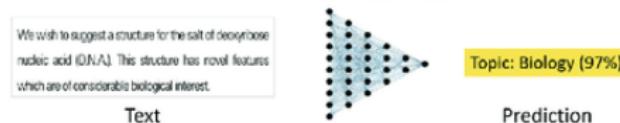
Khamassi et al. (2024) Strong and weak alignment of large language models with human values. *Scientific Reports*

Large Language Models training

A Pretraining



B Fine-tuning



(Ofer, Brandes, Linial 2021, CC BY-NC-ND 4.0)

Caution before talking of “artificial consciousness”

Can we identify “artificial consciousness” when it arrives?

- Phenomenal vs. access consciousness
- Awareness vs. wakefulness
- Composite, multidimensional, multilevel approach
- Similar approach to study animal consciousness (John Birch)
- Awareness requires internal world models, value learning and intentional goal-oriented behavior.

Evers Farisco .. Khamassi (2024) Artificial consciousness. Some logical and conceptual preliminaries. arXiv

References I

 Aubin, L., Khamassi, M., & Girard, B. (2018)

Prioritized Sweeping Neural DynaQ with Multiple Predecessors, and Hippocampal Replays

Living Machines 2018 Conference Paris, France.

 Caluwaerts, K., Staffa, M., N'Guyen, S., Grand, C., Dollé, L., Favre-Félix, A., Girard, B. & Khamassi, M. (2012)

A biologically inspired meta-control navigation system for the psikharpax rat robot

Bioinspiration & Biomimetics 7(2), 025009.

 Cazé*, R., Khamassi*, M., Aubin, L., & Girard, B. (2018)

Hippocampal replays under the scrutiny of reinforcement learning models

Journal of Neurophysiology To appear.

References II

- Coutureau, E., & Killcross, S. (2003)
Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats
Behavioural Brain Research 146(1-2), 167–174.
- Dollé, L., Chavarriaga, R., Guillot, A., & Khamassi, M. (2018)
Interactions of spatial strategies producing generalization gradient and blocking: A computational approach
PLoS computational biology 14(4), e1006092.
- Foster, D. J., & Wilson, M. A. (2006)
Reverse replay of behavioural sequences in hippocampal place cells during the awake state
Nature 440(7084), 680.
- Gupta, A. S., van der Meer, M. A., Touretzky, D. S., & Redish, A. D. (2010)
Hippocampal replay is not a simple function of experience
Neuron 65(5), 695-705.

References III

- Holroyd, C. B., & McClure, S. M. (2015)
Hierarchical control over effortful behavior by rodent medial frontal cortex: A computational model
Psychological Review 122(1), 54.
- Johnson, A., & Redish, A. D. (2007)
Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point
Journal of Neuroscience 27(45), 12176-12189.
- Killcross, S., & Coutureau, E. (2003)
Coordination of actions and habits in the medial prefrontal cortex of rats
Cerebral Cortex 13(4), 400–408.
- Lee, A. K., & Wilson, M. A. (2002)
Memory of sequential experience in the hippocampus during slow wave sleep
Neuron 36(6), 1183-1194.

References IV

- Lin, L.J. (1992)
Self-improving reactive agents based on reinforcement learning, planning and teaching
Machine Learning 8(3-4), 293-321.
- Mattar, M., & Daw, N. D. (2018)
Prioritized memory access explains planning and hippocampal replay
Nature Neuroscience X(Y), M-N.
- Meyer, J. A., Guillot, A., Girard, B., Khamassi, M., Pirim, P., & Berthoz, A. (2005)
The Psikharpx project: Towards building an artificial rat
Robotics and autonomous systems 50(4), 211-223.
- Moore, A. W., & Atkeson, C. G. (1993)
Prioritized sweeping: Reinforcement learning with less data and less time
Machine learning 13(1), 103-130.
- Palminteri, S., Lefebvre, G., Kilford, E.J., & Blakemore, S.-J. (2017)
Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing

References IV

- Peng, J., & Williams, R. J. (1993)
Efficient learning and planning within the Dyna framework
Adaptive Behavior 1(4), 437-454.
- Roumis, D. K., & Frank, L. M. (2015)
Hippocampal sharp-wave ripples in waking and sleeping states
Current opinion in neurobiology 35, 6-12.
- van Seijen, H., & Sutton, R. S. (2015)
A Deeper Look at Planning as Learning from Replay
Proceedings of the 32nd International Conference on Machine Learning Lille, France.
- Sutton, R. S., & Barto, A. G. (1998)
Reinforcement learning: An introduction
MIT press Cambridge, MA.

References V

- Doya, K. (2000)
Reinforcement learning in continuous time and space
Neural Computation 12:219-45.
- Khamassi, M., Velentzas, G., Tsitsimis, T. & Tzafestas, C. (2018)
Robot fast adaptation to changes in human engagement during simulated dynamic social interaction with active exploration in parameterized reinforcement learning
IEEE Transactions on Cognitive and Developmental Systems 10(4), 881-893.
- Keramati, M., & Gutkin, B. (2014)
Homeostatic reinforcement learning for integrating reward collection and physiological stability
eLife 3:e04811.
- Konidaris, G., & Barto, A. G. (2006)
Motivational Reinforcement Learning
Springer Simulation of Adaptive Behavior Conference, SAB 2006.

References VI

- Schweighofer, N., & Doya, K. (2003)
Meta-learning in Reinforcement Learning
Neural Networks 16:5-9-45.
- Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002)
Finite-time Analysis of the Multiarmed Bandit Problem
Machine Learning 47, 235-256.
- Daw, N. D., O'doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006)
Cortical substrates for exploratory decisions in humans
Nature 441(7095), 876.
- Frank, M. J., Doll, B. B., Oas-Terpstra, J., & Moreno, F. (2009)
Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation
Nature Neuroscience 12(8), 1062.

References VII

- Cogliati-Dezza, I., Yu, A. J., Cleeremans, A., & Alexander, W. (2017)
Learning the value of information and reward over time when solving exploration-exploitation problems
Scientific reports 7(1), 16919.
- Cogliati-Dezza, I., Cleeremans, A., & Alexander, W. (2019)
Should we control? The interplay between cognitive control and information integration in the resolution of the exploration-exploitation dilemma
Journal of Experimental Psychology: General in press.
- Wilson, R. C., Geana, A., White, J. M., Ludvig, E. A., & Cohen, J. D. (2014)
Humans use directed and random exploration to solve the explore?exploit dilemma
Journal of Experimental Psychology: General 143(6), 2074.
- Gershman, S. J. (2018)
Deconstructing the human algorithms for exploration
Cognition 173, 34-42.

References VIII

- Kober, J., Bagnell, J. A., & Peters, J. (2013)
Reinforcement learning in robotics: A survey
The International Journal of Robotics Research 32(11), 1238-1274.
- Miller, K. J., Shenhav, A., & Ludvig, E. A. (2019)
Habits without values
Psychological review To appear.
- Khamassi, M., & Humphries, M. D. (2012)
Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies
Frontiers in behavioral neuroscience 6, 79.
- Dezfouli, A., & Balleine, B. W. (2012)
Habits, action sequences and reinforcement learning
European Journal of Neuroscience 35(7), 1036-1051.

References VIII

Khamassi, M., Lacheze, L., Girard, B., Berthoz, A., & Guillot, A. (2005)
Actor-Critic models of reinforcement learning in the basal ganglia: from natural to
artificial rats
Adaptive Behavior 13(2), 131-148.