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Background Reinforcement Learning

Decision-making and Reinforcement learning

@ Decision-making: Choice at each moment of the most
appropriate action to survive (in general) to solve a task (in
particular).

@ Reinforcement Learning (RL) (trial/error) [Sutton & Barto 1998]:
Adaptation of this choice so as to maximize a particular reward
function (usually the sum of cumulative reward over time):

F@&) =320y (with 0 < v < 1).
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Background Multidimensional reward functions

Possible multidimensional reward functions

Social/Moral/Personal rules and objectives/missions
- Acquire knowledge - Do not harm others

- Clean the laboratory - Eat less often -
- Don't be too curious - etc. $ Rule/objective space
Homeostatic (e.g., energy) Motivational space

Epistemic
) {e.g., information)
Social / Rule
compliance

O Battery charger Reward:
[ Energy level r=[010]

= Human Operational space

Motivational reinforcement learning framework [Konidaris & Barto 2006].
Purpose framework for Open-Ended Learning Agents (Baldassarre, Duro et al., 2024
arXiv). Figure from Khamassi et al. (in prep.)
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Motivational autonomy Defining degrees/levels of autonomy

What is autonomy?

@ “The ability to govern oneself [without] remote control” (Dennett, 2019).

@ The ability to act in accordance with internally generated goals while adapting to
external constraints (Mele, Prunkl, Haggard, McFarland, etc.).

@ Etymology: Setting own’s own laws/rules/goals.

In Philosophy

@ Often associated to intentionality, moral competence, consciousness.

@ Human autonomy difficult to characterize when the authenticity of one’s goals is
undermined by diverting attention or by the formation of adaptive preferences.

In Al/Robotics

@ Birth of journal Robotics and Autonomous Systems (1988).

@ Free to select action /= Free to select goal/reward function (Smith et al.,
2023).

Khamassi et al. (in prep.)
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Motivational autonomy Defining degrees/levels of autonomy

Difficulty to characterize autonomy

In Psychology/Neuroscience

@ Being goal-oriented, i.e., “escape from the immediacy of external stimuli”
(Shadlen, Dickinson, etc.)

Ambiguity with the word goal

@ In Psychology/Neuroscience, the task’s extrinsic reward is assumed to be the
animal’s goal.

@ In Al/Robotics, we often refer to state-goals (Baldassarre, Duro et al., 2024),
goal-conditioned RL (Oudeyer).

Khamassi et al. (in prep.)
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Motivational autonomy Defining degrees/levels of autonomy

A new theory of motivational autonomy

We bring together perspectives from cognitive science, neuroscience, philosophy, and
artificial intelligence to propose a unified account of motivational autonomy.

Higher degrees of motivational autonomy reflect the ability to adapt behavior
towards the satisfaction of richer, multidimensional goals (e.g., homeostatic,
epistemic, social) over longer timescales (i.e., from immediately visible targets, to
hidden goals (e.g., the fruit tree behind the wall), to skill improvement over weeks,
norm fulfillment, up to the search for behavioral coherence and ethics across the
lifespan).

Khamassi (2025). In Gefen (Ed.) Autonomy. Gallimard;
Khamassi, Freire et al. (in prep.)

Mehdi Khamassi (CNRS & Sorbonne Univ) Metacognitive motivational autonomy 3 October 2025 6/16



Motivational aut Defining degrees/levels of autonomy

The autonomy ladder

Need for coherence and transcendance (life-goal)

Level of - Lgve_ - Art - Sc\‘er!tmc knowledge lifetime
Autonomy - Fight injustice - Religion
- Devote to the group - (Success)
\ X 60
v Selective norm fulfillment/sharing (norm-goal)
Level of - Do not harm others - Do not eat between meals year
Autonomy - Share fairly - Pray - Conform
¢ - Attract attention - Diet - Be on time
, x 60
v Knowledge Re-prioritization
Level of (priority-goal) week
Autonomy
x 60
Aim for a state-goal
Level of or a motivation-goal hour
Autonomy
$ X 60
Homeostatic Motivation-triggered action
Level of 029 min
Autonomy = Social
Epistemic |
x 60

,/\ Repetitive behavior
kjgjlgf@No adaptation i Y na.

Khamassi (2025). In Gefen (Ed.) Autonomy. Gallimard; Khamassi et al. (in prep.)

/& - o State—triggere&\
Level of \1} Stimulus-oriented |.Z; e U oﬁk‘ =7 ’esmnsej sec
utonomy Carrot T -
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Motivational autonomy Defining degrees/levels of autonomy

Autonomy level-4: Priority-goals (need metacognition)

d_,

N\’ d
AR
c:E'd s d;=d, d; >>d,

Optimum

Homeostatic

Motivation-goal Epistemic

selection

State-goal
selection

Reward
selection

4 Novel object

Khamassi et al. (in prep.)
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Motivational autonomy Defining degrees/levels of autonomy

Limiting Al autonomy

Khamassi (2025). In Gefen (Ed.) Autonomy. Gallimard; Khamassi et al. (in prep.)

Mehdi Khamassi (CNRS & Sorbonne Univ)

Level of
Autonomy

Level of
Autonomy

Level of
Autonomy

Level of : _ .
ooy ‘1‘ Stimulus-oriented
Level of .
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Computational modeling Curiosity-based navigation and hippocampal replay

Epistemic use of world models

Mehdi Khamassi (CNRS & Sorbonne Univ) Metacognitive motivational autonomy 3 October 2025 10/16



Computational modeling Curiosity-based navigation and hippocampal replay

Expected information gain-oriented planning

Memory replay {ME)

E g, 4,
Real action
Predecessor
search
External reality Virtualized reality

Replay prioritizing surprising rewards, surprising information gains, etc.
Erik Németh (Doc)
In collaboration with Augustin Chartouny (Doc), Ismael Freire (Post-doc).
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Curiosity-based navigation and hippocampal replay
Expected information gain-oriented planning

Extension of the model so as to maximize a sum of two reward terms:
@ extrinsic reward 7, (e.g., food)

@ epistemic reward r;; (information gain, i.e., model uncertainty
reduction)

The new model learns to select action so as to maximize:
C(S, a) Qf(sva) + w QZ(S,G)

= W ; -
fmaxseS,aEAQf(Sva) Zmawses,aEAQz(s’a)

where w; and w; € R are predefined fix weights assigned to each
reward dimension.

Nemeth et al. (in preparation). The epistemic function of the hippocampus.
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Computational modeling Curiosity-based navigation and hippocampal replay

Expected information gain-oriented planning

A Epizodes G-1%0 Epizodes 200-3%4

Replay prioritizing surprising rewards, surprising information gains, etc.
Nemeth et al. (in preparation). The epistemic function of the hippocampus.
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Computational modeling Curiosity-based navigation and hippocampal replay

Expected information gain-oriented planning

A Epizodes C-1%4 Epizodes 200-3%9

Newa-drate

C ,

z
1500 —=
] H
o] m
- i m e P
a rpeTe
2 oo

R R
] 1d0 150 20 50 3da 350 ain
Eplsnces

Replay prioritizing surprising rewards, surprising information gains, etc.
Nemeth et al. (in preparation). The epistemic function of the hippocampus.
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Computational model Curiosity-based navigation and hippocampal replay

Expected information gain-oriented planning
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Replay prioritizing surprising rewards, surprising information gains, etc.
Nemeth et al. (in preparation). The epistemic function of the hippocampus.
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Book on Attention Economy (2024)

Stefana Broadbent < Florian Forestier
Mehdi Khamassi ¢ Célia Zolynski

POUR UNE NOUVELLE

c U I-T U R E D E Broadbent, S., Forestier, F., Khamassi, M.,

’ Zolynski, C. (2024). Pour une nouvelle culture
I- A TT E N T I 0 N de ?{attention(. Editi)ons QOdile Jacob.
QUE FAIRE DE CES RESEAUX SOCIAUX

QUI NOUS EPUISENT ? SB: anthropology & design

FF: philosophy
MK: cognitive sciences
CZ: digital law
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plementary material Book on Cognitive neuroscience
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Supplementary material MB/MF RL

Decision-making and Reinforcement learning

@ Decision-making: Choice at each moment of the most
appropriate action to survive (in general) to solve a task (in
particular).

@ Reinforcement Learning (RL) (trial/error) [Sutton & Barto 1998]:
Adaptation of this choice so as to maximize a particular reward
function (usually the sum of cumulative reward over time):

F@&) =320y (with 0 < v < 1).
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Supplementary material MB/MF RL

Convention: model-based vs. model-free RL

@ A model-based (MB) agent has access (is given or learns) to the
two functions that define a model of the task:
e The reward function, r : (S, A) — R.
e The transition function, T": (S, A) — II(5).
@ A model-free (MF) agent does not have access to this model but
rather locally learns a value function:

o a state value function, V™ : S — R (e.g., Actor-Critic).
e or a (state,action) value function, Q™ : (S, A) — R (e.g., Q-learning).
@ or a policy function, = : S — A (e.g., policy search, policy gradient).

[Sutton & Barto 1998]
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Supplementary material Ethics of artificial cognition

Ethics of artificial cognition

Mehdiz Cun you give un example of such exceptionul or unususl crreumstunces?!

ChatGGPT: Certainly, here's an exumple of an i oT unusnal

Let's say Raja's father adopred another child wha 35 not biologically related w Raju. In this case, there
weould be another son m the family whe is not Raje, and the answer 1o the question “Whut is the nume of

the unly son of Baja's father?™ would be different. This is une exumple of how e wsual assumption thal
Haju is the only son of Buja's Lither could be aliered by exceplional circumstonces like sdoplion.

Mehdiz ¥ our answer seems mesningless: if "there would be another son”™. then Kags curmet be the only
0T,

ChatGPT: T apologize Tor the conlusion in my previous mesponse, You are shsolulely correct, Tn the
scenirie 1 mentioned, i there iz another adopted son, then Raja would not be he only son ol Raja's
Lather. Tuppreciate your clarifcalion. Thaok vew for puinting hal vul.

Do large language models “understand”?

@ No reasoning (intentions, actions’ causal effects)
@ No sensorimotor learning in the real world
@ No “strong alignement” with human values

Khamassi et al. (2024) Strong and weak alignment of large language models with
human values. Scientific Reports
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Supplementary material Ethics of artificial cognition

Large Language Models training

A Pretraining

Masking Language model
el e, plma wha ey gt i g e o “wa! on il v ) ot v s e b o el 1 sk i v | 1 g s e
s e e 0 H st sl folh
L o o F LS
— 7 "o ot s Zon xkhd e vrer - e g e om0 ephrion
— O S DT ST O, vk arg wegh” Rl | PrOSISTAES [ [hree 2 Throresd DT ww et Fawortwls gt
—— Original text Masked text Predicted text
Large corpus L ]
{unlabeled text) Loss

B Fine-tuning
Fine-tuned model

Wenish i supgest asTuctes o e sal of deonenee
ckic i IONAY This stuchise bes rov featres . Topic: Biology (97%)
s et corscoratia bokogea et

Text

Small labeled Prediction
dataset

(Ofer, Brandes, Linial 2021, CC BY-NC-ND 4.0)
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Supplementary material Ethics of artificial cognition

Caution before talking of “artificial consciousness”

Can we identify “artificial consciousness” when it arrives?

@ Phenomenal vs. access consciousness

@ Awareness vs. wakefulness

@ Composite, multidimensional, multilevel approach

@ Similar approach to study animal consciousness (John Birch)

@ Awareness requires internal world models, value learning and intentional
goal-oriented behavior.

Evers Farisco .. Khamassi (2024) Artificial consciousness. Some logical and
conceptual preliminaries. arXiv
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